MATH 2060 Tutorial 11

Section 9.2 Q4 Discuss the convergence or divergence of the series with n-th term (a) $a_n = 2^n e^{-n}$ (f) $b_n = n! e^{-n^2}$ Sol: (a) Recall the Ratio Test: (i) If I r<1 and KEN s.t. MANIST, JN2K. then ZMn is absolutely convergent (i) If J KEN s.t. MAN 31, VN 2K, then ZXn is divergent Here we can apply the Ratio Test : $\left|\frac{\partial nr_{I}}{\partial n}\right| = \frac{2}{e} < |$ for all N Therefore, ZQn is convergent (f) Here we can still apply the Ratio Test: $\left|\frac{b_{nt1}}{b_n}\right| = (nt1)e^{-(2nt1)}$ Let f(x)=(x+1) e and note that $f'(x) = e^{-Q(xt1)} - 2(xt1)e^{-ext1} = -(2xt1)e^{-ext1} < 0, \forall x \ge 1$ $l-lence, f(n) \leq f(1) = \frac{2}{p^3} \text{ for all } n \geq 1$ which implies the set of An Then Zbn is convergent

8. Let 0 < a < 1 and consider the series

 $a^{2} + a + a^{4} + a^{3} + \dots + a^{2n} + a^{2n-1} + \dots$

Show that the Root Test applies, but that the Ratio Test does not apply.

Sol: Recall the Root Text:
(i) If
$$\exists r \leq l$$
 and $k \in \mathbb{N}$ s.t. $|X_n|^{\frac{1}{n}} \leq r \cdot \forall n \geq k$,
then $\Xi \wedge n$ is absolutely convergent
(ii) If $\exists k \in \mathbb{N}$ s.t. $|X_n|^{\frac{1}{n}} \geq l \cdot \forall n \geq k$,
then the series $\Xi \wedge n$ is divergent
Here we first apply the Root Test to prove the convergence of
the series
Note that we can write the series with the n-th term as
 $\gamma_n = \int_{n=1}^{n+1} if n is odd$
 $\int_{n=1}^{n-1} if n is odd$
which is a reatrangement of the series $\sum_{n=1}^{\infty} a^n$
Then $|X_n|^{\frac{1}{n}} = \int_{n=1}^{n+\frac{1}{n}} if n is even$
And it's clear that $\lim_{n \to \infty} |X_n|^{\frac{1}{n}} = A \leq 1$
By the Root Text, $\Xi \wedge n$ is convergent
However, if we want to apply the Ratio Test:
 $|\frac{\chi_{min}}{\pi}| = \int_{n=1}^{n+1} if n is odd$

Ratio Test allow not apply in the sense that one cannot find
K EN and
$$r \in \{0,1\}$$
 such that for all $N \ge K$,
either $\left|\frac{N_{\text{trill}}}{N_{\text{trill}}}\right| \le r$ or $\left|\frac{N_{\text{trill}}}{N_{\text{trill}}}\right| \ge 1$
17. If $p > 0, q > 0$, show that the series
 $\sum \frac{(p+1)(p+2)\cdots(p+n)}{(q+1)(q+2)\cdots(q+n)}$
converges for $q > p+1$ and diverges for $q \le p+1$.
Sol: Recall Raabe's Test:
(i) If there exists $\alpha \ge 1$ and $K \in \mathbb{N}$ s.t.
 $\left|\frac{N_{\text{trill}}}{N_{\text{trill}}}\right| \le 1 - \frac{\alpha}{N}$ for all $n \ge K$.
then $\Xi \cap n$ is absolutely convergent
Ui) If there exist $\alpha \le 1$ and $K \in \mathbb{N}$ s.t.
 $\left|\frac{N_{\text{trill}}}{N_{\text{trill}}}\right| \ge 1 - \frac{\alpha}{N}$ for all $n \ge K$.
then $\Xi \cap n$ is not absolutely convergent
Ui) Here, we let $N_{\text{trill}} = \frac{(p+1)(p+2)\cdots(p+n)}{(q+1)(q+2)\cdots(q+n)} \ge 0$ and wish to
apply the Raabe's Test
Note that $\left|\frac{N_{\text{trill}}}{N_{\text{trill}}}\right| = \frac{p+n+1}{q+n+1}$
Then $\lim_{n\to\infty} [n(1-\lfloor\frac{N_{\text{trill}}}{N_{\text{trill}}}] = \lim_{n\to\infty} \frac{n(q+p)}{q+n+1} = q \cdot p$
 $\alpha \le n$ increases

Then $h\left(\left|-\frac{\lambda_{nti}}{\lambda_{n}}\right|\right) \ge q - P$, i.e. $\left|\frac{\lambda_{nti}}{\lambda_{n}}\right| \le \left|-\frac{q - P}{n}\right|$ Take 2=9-P in Reabers Test, we conclude EXn converges 21f 9 < Pt1, then 9-P<1, by Cor 9.2.9 ZAn is divergent (An 70 for all n) (3) If 9= Pt1, then Nn= Pt1 Pt1th Since P>0, 12+1 > 1 P+1+n > n+1 Now let Yn = Inti, which is a divergent series And by Comparison Test, it follows that I'm is also divergent